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The role of lactic acid and its conjugate base, lactate, has evolved during the past decade in the care of patients in the emergency
department (ED). A recent national sepsis quality measure has led to increased use of serum lactate in the ED, but many causes for
hyperlactatemia exist outside of sepsis. We provide a review of the biology of lactate production and metabolism, the many causes of
hyperlactatemia, and evidence on its use as a marker in prognosis and resuscitation. Additionally, we review the evolving role of
lactate in sepsis care. We provide recommendations to aid lactate interpretation in the ED and highlight areas for future research.
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INTRODUCTION
Lactate measurement in the emergency department

(ED) is a source of both guidance and confusion. Although
lactate can be a useful tool when interpreted correctly,
improper interpretation can mislead clinicians and result in
inappropriate care and unnecessary therapies. Our
understanding of lactate has developed considerably since it
was first isolated in sour milk by Swedish chemist Carl
Wilhelm Scheele in 1780.1 Since then, lactic acid and its
conjugate base, lactate, have become integral parts of the
diagnostic, therapeutic, and prognostic management of
patients in the ED. However, significant controversy and
misinterpretation surround the use of lactate, particularly in
light of more recent national sepsis quality measures. We
provide a review of the physiologic description of lactate
and its application in the ED.
Chemistry
Lactic acid is an organic a-hydroxy acid with the

chemical formula CH3CH(OH)COOH. With a pKa of
3.86, lactic acid readily deprotonates a hydrogen ion to
form its conjugate base, the lactate ion. At physiologic pH
in human beings, the ratio between the lactate ion and
lactic acid is approximately 3,000:1, so the lactate anion is
commonly referred to as “lactate.”2 Lactate exists as 2
stereoisomers: L-(þ)-lactate and D-(–)-lactate. L-lactate
composes nearly the entirety of lactate present in human
beings because mammalian cells exclusively contain L-
lactate dehydrogenase, the enzyme that converts pyruvate
to lactate. In normal physiologic states, D-lactate is
produced in nanomolar concentrations in mammalian
cells.3 However, it may accumulate in certain pathologic
2 : February 2020
conditions and cause a metabolic acidosis.4-7 We will refer
to L-lactate as lactate unless otherwise specified.

Physiologic Function of Lactate
In times of both rest and exercise, lactate serves 2

important functions: maintaining blood glucose by acting
as a carbon substrate for gluconeogenesis, and acting as an
oxidizable agent that can be shuttled from areas of high
glycolysis and glycogenolysis activity to areas of high
cellular respiration to engage in oxidative phosphorylation.8

Lactate uptake and use is increased in the heart and brain
under times of metabolic stress, including sepsis and shock,
with the heart using lactate for up to 60% of its metabolic
demand, and the brain up to 25%.9,10 The myocardium
oxidizes lactate as a carbon source for oxidative
phosphorylation and is a net consumer of lactate. During
states of moderate exercise, myocardial uptake of lactate
increases proportionally with the workload.11,12 Similarly,
neurons and astrocytes in the brain will take up lactate and
oxidize it as a fuel source to generate energy both at rest and
during times of hypoglycemia, exercise, and
cardiopulmonary resuscitation.13

Lactate Homeostasis
Traditionally, lactate has been viewed as an end product

of anaerobic metabolism largely in skeletal muscle, a
concept known as the “oxygen debt model” that was
pioneered in the 1920s.14 In the setting of decreased
oxygen availability, pyruvate is produced from glucose
through glycolysis and then reduced to lactate by L-lactate
dehydrogenase. This reaction allows nicotinamide adenine
dinucleotide (reduced) to be oxidized to nicotinamide
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adenine dinucleotide (oxidized), which serves as a necessary
oxidizing agent in the generation of adenosine triphosphate
(Figure 1).15 In this conventional perspective, lactate was
considered simply a metabolic waste product generated as a
cost for resupplying the cell with nicotinamide adenine
dinucleotide (oxidized).

More contemporary understanding recognizes lactate as
a key player both in energy use and oxidation/reduction
reactions, even under aerobic conditions.16 Several studies
have demonstrated that lactate was produced by glycolysis
at rest when skeletal muscle was fully oxygenated and
during periods of activity in which the anaerobic threshold
had not been reached.17 The proinflammatory cytokine
milieu with increased catecholamine levels, often
observed in sepsis or other states of physiologic stress,
causes an increased metabolic state. Glucose use is
increased, and so is the presence of transporters and
enzymes that are associated with glycolysis and lactate
metabolism.9 Increased glycolysis leads to an increased
concentration of pyruvate, which exceeds the oxidative
capacity of the tricarboxylic acid cycle cycle and is
subsequently converted to lactate.

Metabolism
The average lactate turnover rate at a physiologically

steady state is approximately 20 mmol/kg per day.18 The
liver metabolizes approximately 70% to 75% of circulating
lactate.19 This typically occurs in periportal hepatocytes,
Figure 1. Biochemical pathway of glucose showing creation of
lactate.
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where lactate is used for either gluconeogenesis or, less so,
oxidation.19 The glucose created through gluconeogenesis
is then released back into circulation to be redistributed
through the body. Several factors are associated with
decreased hepatic clearance, including acidosis, underlying
cirrhosis, and hypoperfusion.20 Renal clearance accounts
for approximately 25% to 30% of lactate removal.21 The
majority occurs in the renal cortex, where cells will take up
lactate and then either oxidize it for energy or use it for
gluconeogenesis to create glucose to be exported back to the
renal medulla or systemic circulation. Only an estimated
10% of renal clearance is through actual urinary excretion.

Classification of Lactic Acidosis
A “lactic acidosis” refers specifically to an elevated serum

lactate level with a pH less than or equal to 7.35.22 In
contrast, hyperlactatemia has several definitions, but most
commonly refers to a serum lactate level greater than or
equal to 2 mmol/L, regardless of pH.23 In 1976, Cohen
and Woods24 categorized lactic acidosis into 2 groups (type
A and B) based on the presence or absence of clinical
evidence of tissue hypoxia, and provided a useful
framework to develop management strategies (Table 1).
The cause of lactic acidosis may be multifactorial and might
not exclusively fall into either type A or B.

Type A lactic acidosis is defined by lactate accumulation
in the setting of poor tissue perfusion or oxygenation.
Common clinical entities leading to type A lactic acidosis
include shock, cardiac arrest, severe hypoxemia, severe
anemia, regional tissue hypoperfusion, or excessive
muscular contraction. In these scenarios, oxygen demand
outstrips the available oxygen supply, either systemically or
regionally, leading to lactate accumulation. Type B lactic
acidosis refers to lactate elevation in the absence of cellular
hypoxia. Common causes of type B lactate accumulation in
the ED include medications (eg, albuterol, epinephrine) or
underlying disease process states (eg, sepsis, malignancy,
end-stage liver disease, diabetic ketoacidosis).

Accumulation of D-lactate leading to an acidosis is rare
and more difficult to recognize because measuring it requires
a separate analytic test. In short bowel syndrome, decreased
digestion of carbohydrates leads to the presence of sugars in
the colon. Bacteria then ferment these sugars to create D-
lactate and additionally convert L-lactate to D-lactate.2,4

Diabetic ketoacidosis and propylene glycol administration
have also been associated with D-lactate buildup.
LABORATORY EVALUATION
Methods for Lactate Measurement

Standard measurement of lactate typically occurs either
through enzymatic spectrophotometry or electrode-based
Volume 75, no. 2 : February 2020



Table 1. Classification of elevated lactate level as defined by Cohen and Woods.24

Type Cause Clinical Scenarios

A Lactate accumulation in the setting of poor tissue perfusion or

hypoxia (either regional or global)

Global: Shock (cardiogenic, obstructive, distributive, hypovolemic) or

profound hypotension, severe anemia, cardiac arrest, trauma, burns,

carbon monoxide, cyanide

Regional: Limb or mesenteric ischemia, localized trauma or burns,

compartment syndrome, necrotizing soft tissue infection,

microcirculatory dysfunction*

Exertional: Convulsions or seizure, increased work of breathing,

strenuous exercise

B Lactate accumulation in the absence of clinical evidence of

tissue hypoperfusion or hypoxia

B1 Lactate elevation associated with underlying disease process Malignancy, sepsis, thiamine deficiency, liver failure, renal insufficiency,

pheochromocytoma, diabetic and alcoholic ketoacidosis

B2 Lactate elevation caused by a drug or toxin Metformin, acetaminophen, b2-agonists (including albuterol,

epinephrine), sympathomimetics, theophylline, nucleoside reverse-

transcriptase inhibitors, alcohol, toxic alcohols, propofol, cyanide,

carbon monoxide

B3 Lactate elevation caused by congenital errors of metabolism Pyruvate dehydrogenase deficiency, pyruvate carboxylase deficiency,

glucose-6-phosphatase deficiency, congenital mitochondriopathies

*Area of ongoing research.
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amperometry. Both methods correlate extremely well when
done properly. After blood is drawn, RBC metabolism
continues to generate lactate, particularly if significant
delays exist before analysis. This undesirable elevation can
be diminished by immediately cooling the blood sample or
by use of a “gray top” collection tube, which contains
sodium fluoride, a preservative that inhibits cellular
metabolism.25 However, a specimen analyzed within 15
minutes from drawing blood will have minimal distortion
of lactate, even if no method to prevent additional
metabolism is performed.26 Whole blood and finger-stick
samples can be analyzed with electrode-based amperometry
at the bedside, providing a point-of-care lactate level, whose
values correlate well with standard assays and provide
results significantly quicker.27,28
Effect of Tourniquet Use on Lactate
There has been concern that tourniquet use may elevate

local lactate levels by leading to transient ischemia and
subsequent anaerobic metabolism. An older study involving
arterial tourniquet application in the operating room to
induce ischemia resulted in a linear increase in serum
lactate level, up to 206% of baseline values, after 75
minutes of tourniquet application.29 However, the
application of a venous tourniquet does not significantly
alter venous lactate levels.26,30
Volume 75, no. 2 : February 2020
Difference Between Arterial and Venous Lactate
Results

Arterial and peripheral venous lactate values correlate very
well when the results fall within normal limits; however, mild
discrepancies arise with hyperlactatemia.31-36 Central lactate
values correlate extremely well with arterial values at all
levels.37 Arterial and central blood samples represent lactate
that is systemically circulated, whereas venous samples reflect
the local milieu, thus explaining the small discrepancies
between these sites. However, drawing arterial blood can be
painful, time consuming, and challenging in certain patient
populations. It is therefore appropriate, particularly in
patients without an arterial line, to start with and trend
peripheral venous samples.
Effect of Lactated Ringer’s Solution on Serum Lactate
Lactated Ringer’s solution is a commonly administered

resuscitation fluid that may improve patient-centered
outcomes compared with normal saline solution,
particularly in septic patients.38-40 Each liter of lactated
Ringer’s solution contains 28 to 29 mmol of sodium
lactate. In a 70-kg adult, approximately 1,400 mmol (20
mmol/kg) of lactate is metabolized daily. To our
knowledge, there is no published evidence that a bolus of
lactated Ringer’s solution significantly increases lactate
compared with normal saline solution, although transient
Annals of Emergency Medicine 289
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elevations can be observed, particularly if venipuncture
occurs in the immediate vicinity of the lactated Ringer’s
solution infusion site.41,42 In patients with liver failure or
significant hepatic hypoperfusion, there may be an increase
in serum lactate level because of an inability of the liver to
metabolize the additional lactate burden.43
LACTATE IN SEPSIS
Among its many uses as a diagnostic test, lactate level has

long been used as a marker of resuscitation, for risk
stratification, and as a mortality prediction tool in sepsis.
Despite a commonly held belief that elevated lactate levels
in sepsis occur as a consequence of anaerobic metabolism
from tissue malperfusion, there is mounting evidence that
this may not be the primary source of lactate production,
particularly in patients without overt shock physiology.
Indeed, accelerated aerobic glycolysis from adrenergic stress
is now thought to be a significant cause of hyperlactemia in
septic patients, with additional contributions from
impaired clearance, medication effects, microcirculatory
dysfunction, and tissue malperfusion.44-47 Cytopathic
hypoxia and direct mitochondrial impairment have been
proposed as another cause, although the exact mechanism
remains incompletely understood and further research is
required.48,49
Anatomic Location of Lactate Generation in Sepsis
The specific anatomic site of lactate generation in septic

patients remains controversial. The 2 regions suspected to
generate the majority of lactate in sepsis are the lungs and
skeletal muscle. The strongest evidence comes from the
lungs as generators of lactate in sepsis.50-53 One hypothesis
is that neutrophil b2-receptor stimulation by endogenous
catecholamines causes significant lactate production, which
is further substantiated by the large number of these
receptors found in the lungs.54 Muscle tissue has been
shown to have significantly higher lactate levels than
supplying arteries in septic shock.46 An additional source of
lactate elevation in sepsis is leukocyte glycolysis. Like other
tissues, inflammatory cells undergo accelerated aerobic
glycolysis during sepsis and have a markedly increased
lactate output, similar to that which occurs in the lungs.54

Microcirculatory dysfunction has been proposed as a
source of lactate in sepsis. Proinflammatory cytokines lead
to endothelial and hematologic cell dysfunction, causing
heterogeneous areas of low or slow flow at the capillary-
venule-arteriole level. This leads to scattered areas of tissue
hypoxia despite normal macrocirculatory parameters.55-57

Using dark-field microscopy to visualize the
microcirculation, investigators have linked the density of
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microscopic vascular dysfunction to illness severity,
elevated lactate levels, and worsened outcomes.56,58,59

Further study is needed to determine the importance of
microcirculatory dysfunction in sepsis and potential
therapies to correct it.

Anaerobic Metabolism in Sepsis
Although tissue hypoxia and resultant anaerobic

metabolism will result in increased lactate production, this
relationship has been challenged as the primary cause of
hyperlactatemia in sepsis. Certain septic patients develop
vasopressor-dependent hypotension, yet never experience
an elevated lactate level.59,60 Another subset of septic
patients develops hyperlactatemia with associated high
mortality, yet lacks hypotension.61 Additionally, if
anaerobic metabolism from tissue hypoxia were the main
source of lactate in sepsis, we would expect to see several
things. First, interventions to increase oxygen delivery
should consistently decrease lactate levels. However, several
studies have failed to support this.62,63 Furthermore,
studies evaluating tissue hypoxia in sepsis and septic shock
have found no evidence of cellular hypoxia. In fact, muscle
and mucosal pO2 is often elevated in sepsis.46,64-66 Tissues
with an adequate oxygen supply should not generate lactate,
yet the lung is a major source of lactate in sepsis.50,51

Lactate in “Occult Hypoperfusion” and “Cryptic
Shock”

The terms “occult hypoperfusion” and “cryptic shock”
have been used to describe patients with elevated lactate
levels and normal blood pressure, and reflect their relatively
high mortality rate. Indeed, in the initial early goal-directed
therapy trial, one of the inclusion criteria was serum lactate
level greater than or equal to 4 mmol/L, regardless of blood
pressure.67 In patients with suspected infection, elevated
lactate levels were associated with increased 28-day
mortality regardless of blood pressure, and used the term
“occult hypoperfusion” to describe this subset of patients,
which had previously been used for patients with traumatic
injuries and heart failure syndromes.68-70 Later, Puskarich
et al61 showed that septic patients with cryptic shock,
defined as a lactate level greater than or equal to 4 mmol/L
without hypotension, and those with “overt” shock,
defined as hypotension after a fluid challenge, had similar
mortality after protocolized therapy.

LACTATE IN OTHER CONDITIONS
A recent study evaluated patients admitted with a lactate

level greater than 4 mmol/L and found 23.2% of cases were
from infection, 20% from seizures, and the remaining from
causes unrelated to infection.71
Volume 75, no. 2 : February 2020
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Trauma, Burns, and Inhalational Injuries
Elevated lactate levels in patients with traumatic injuries

are associated with increased mortality.72-74 Lactate
elevation has classically been attributed to global
hypoperfusion in the setting of hemorrhagic shock, or
regionally, as in the case of arterial vessel injury. However,
much as in sepsis, additional mechanisms, such as
accelerated glycolysis, cause hyperlactatemia during
hemorrhage.75,76 An elevated initial serum lactate level may
occur in patients with occult hypoperfusion and can be
used as both a prognostic indictor and a marker of
resuscitation.77,78 A failure to clear lactate in trauma
patients has been shown to be a strong independent
predictor of mortality, as well as length of stay in the
hospital and ICU, and a risk factor for the development of
infection, regardless of the initial presenting vital signs.79

Lactate serves as a prognostic indicator of infectious
complications, organ dysfunction, and mortality, and as a
marker of resuscitation in patients with burns and
inhalational injuries.80,81 Lactate levels greater than or
equal to 2 mmol/L and the failure to clear an elevated
lactate level have been associated with mortality in previous
studies and may outperform base excess.82 It may be
reasonable, according to published evidence, to use lactate
normalization as a goal in the fluid resuscitation of these
patients, although additional evidence is needed before
widespread adoption of this approach.83

Seizures, Convulsions, and Extreme Exertion
Seizures are known to cause hyperlactemia as a result of

local muscle tissue hypoxia and resultant anaerobic
metabolism.84 One study evaluating 157 patients with
generalized tonic-clonic seizure showed that 84.7% had
elevated lactate levels, with amedian of 3.64mmol/L but with
levels as high as 17 mmol/L.85 Patients with hyperlactemia
caused solely by seizures should have rapid clearance within 1
to 2 hours after the seizure resolution.71,86 There has been no
correlation between degree of lactate elevation and outcome.71

Patients with extreme exertion or agitation, particularly those
in physical restraints, develop hyperlactatemia through a
similarmechanism. An observational study found that 95%of
collapsed Boston Marathon runners had an average lactate
level of 3.45 mmol/L.87

Thiamine Deficiency
Thiamine is an essential cofactor in the conversion from

pyruvate to acetyl coenzyme A. A deficiency in thiamine will
therefore result in an inability of pyruvate to enter the
tricarboxylic acid cycle and rather undergo anaerobic
metabolism, leading to elevated lactate levels (Figure 1).
Patients with long-term alcohol use, poor nutritional status,
Volume 75, no. 2 : February 2020
sepsis, or history of gastric bypass surgery are at particular
risk for hyperlactatemia as a result of thiamine deficiency.88

Recent studies have shown that the administration of
intravenous thiamine to septic patients is associated with
faster lactate clearance and decreased mortality, particularly
those with underlying thiamine deficiency or alcohol use
disorders.89-92
Toxins and Medications
Although lactate elevation in the majority of toxicities is

thought to be primarily due to a type B lactic acidosis, the
underlying mechanisms for lactate production are often
complex and multifactorial. Mechanisms include inhibition
of oxidative phosphorylation or mitochondrial damage, b2-
adrenergic stimulation, shock states, increased muscle
activity, seizures, renal failure, and hepatic toxicity. Table 2
provides a more comprehensive list of medications and
toxins associated with lactate elevation.93

Acetaminophen. Lactate elevation has been proposed to
be caused by 2 mechanisms in patients with acetaminophen
toxicity. Animal models have shown that large
acetaminophen ingestions directly inhibit the
mitochondrial electron transport chain before any
laboratory evidence of hepatotoxicity.94,95 Later, lactate
elevation occurs as a result of increased N-acetyl-p-
benzoquinone imine production, the toxic metabolite
associated with liver injury. Lactate elevation in acute liver
failure portends a poor prognosis.94

b2-Agonists (albuterol, epinephrine). b-Agonists have
been shown to result in lactate elevation primarily through
accelerated glycolysis, even in fully aerobic conditions.32

The association between albuterol and lactate elevation was
initially limited to case reports; however, recent data
suggest it is likely a relatively common phenomenon. A
study evaluating 105 children admitted with severe asthma
exacerbation reported that 83% had a lactate level greater
than 2.2 mmol/L and 45% had lactate levels greater than 5
mmol/L.96 Lactate elevations associated with albuterol
typically resolve quickly after completion of therapy.97

Epinephrine also causes an elevated lactate level through a
similar mechanism.75,76,98 Previous investigations into the
use of epinephrine in septic shock have found that survivors
have higher lactate levels in the first hours of resuscitation
compared with nonsurvivors.99

Carbon monoxide and cyanide. Carbon monoxide
reversibly binds to hemoglobin with approximately 200 to
300 times the affinity of oxygen, resulting in decreased
arterial oxygen delivery. Furthermore, it binds to
cytochrome A, inhibiting oxidative phosphorylation.100,101

Lactate elevation in pure carbon monoxide poisoning is
Annals of Emergency Medicine 291



Table 2. Toxins associated with hyperlactatemia (adopted from Andersen et al93).

Toxin or Medication Mechanism of Lactate Elevation Recommended Therapy or Antidote Comments

Abrin Protein inhibitor and causes direct cellular damage,

with resultant hepatotoxicity causing poor

clearance, seizures

Supportive care Toxic component of jequirity beans

Acetaminophen Multiple mechanisms, including direct inhibition of

electron transport chain (in the absence of

hepatotoxicity), impaired clearance after direct

hepatocyte toxicity because of increased NAPQI

production

N-acetyl cysteine, aggressive supportive care,

liver transplantation if indicated

Most common cause of acute liver failure in developed

countries

Albuterol b2-Receptor activation N/A Lactate elevation associated with albuterol resolves after

completion of therapy.

Carbon monoxide Reversibly binds to hemoglobin with approximately

200–300 times the affinity of oxygen, resulting in

decreased arterial oxygen content. Binds to

cytochrome A, inhibiting oxidative phosphorylation.

Decontamination, hyperbaric oxygen,

supportive care

Lactate elevation in pure carbon monoxide poisoning is

typically mild, but has been shown to correlate with the

severity of toxicity. High lactate levels should raise

suspicion for cyanide toxicity.

Cyanide Impairment of oxidative phosphorylation by inhibiting

complex IV in the electron transport train

Decontamination. Antidotes include

hydroxycobalamin and sodium thiosulfate

with sodium nitrate.

Lactate levels >10 mmol/L are highly concerning for

concomitant cyanide poisoning. Animal models have

shown that cyanide levels and lactate levels are largely

directly correlated.

Ethanol Increased NADH to NADþ ratio Supportive care Often increased by a secondary cause, such as sepsis or

thiamine deficiency

Metformin Inhibits gluconeogenesis, thereby decreasing NADþ

levels. Newer evidence suggests metformin may

poison mitochondrial transport chain.

Cessation of metformin; may require dialysis.

Supportive care.

Nucleoside reverse-

transcriptase inhibitor

Suspected from poor clearance because of liver injury;

animal models have shown impaired mitochondrial

function.

Supportive care. Cessation of offending agent. Examples include didanosine, stavudine, and lamivudine.

Propofol Exact mechanism is unclear. Several animal studies

have suggested a mitochondrial process and

include uncoupling of oxidative phosphorylation,

oxidation of cytochromes, and inactivation of

complex II/III/coenzyme Q.

Removal of propofol, dialysis, supportive care Characterized by bradycardia, lactic acidosis, hyperkalemia,

cardiovascular compromise, hepatic steatosis,

rhabdomyolysis, renal injury, and lipemia. Rare except in

cases of prolonged high doses of propofol infusion.

Ricin Protein inhibitor and causes direct cellular damage,

with resultant hepatotoxicity causing poor

clearance, seizures

Supportive care Toxic component of castor bean

Sodium azide When combined with acid, it forms hydrazoic acid,

which is highly toxic and causes direct inhibition of

oxidative phosphorylation. Seizures.

Supportive care A white powder used as a reagent in car air bags and

laboratory preservatives

Sodium fluoroacetate Inhibits the Krebs cycle, thus impairing aerobic

metabolism. Seizures.

Supportive care Highly toxic and currently licensed for use only against

coyotes in the United States
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typically mild, but has been shown to correlate with the
severity of toxicity.101-103 Cyanide toxicity is most
commonly observed with concomitant carbon monoxide
poisoning after smoke inhalation injuries. Cyanide impairs
oxidative phosphorylation by inhibiting complex IV in the
electron transport train. Animal models have shown that
cyanide levels and lactate levels are closely correlated.104

Lactate levels greater than 10 mmol/L are highly
concerning for concomitant cyanide poisoning.105

Ethanol. Acute ethanol intoxication causes an elevated
lactate level primarily through an increased nicotinamide
adenine dinucleotide (reduced) to nicotinamide adenine
dinucleotide (oxidized) ratio, which favors the creation of
lactate. Underlying comorbidities, such as liver
impairment, renal disease, or thiamine deficiency, can also
lead to lactate elevation.

Metformin. Metformin increases peripheral glucose
uptake, thereby inhibiting gluconeogenesis and decreasing
the availability of nicotinamide adenine dinucleotide
(oxidized), which is necessary to covert lactate to pyruvate.
In acute overdose, profoundly elevated lactate levels have
been observed but are not correlated with prognosis.106

Renal impairment with a glomerular filtration rate less than
60 is thought to increase the risk for development of
hyperlactatemia.107
PROGNOSTIC VALUE AND LACTATE
CLEARANCE

Elevated lactate levels and an inability to clear lactate are
associated with a worse prognosis in many conditions,
particularly in sepsis, trauma, hemorrhage, shock, and
cardiac arrest.108-111 In a prospective cohort study of ED
patients with infection, mortality rates increased with
increasing lactate levels, with an initial lactate level greater
than or equal to 4 mmol/L associated with a 28%
inhospital mortality rate.112 In a separate study of patients
with severe sepsis, this relationship was found to be
independent of shock state.113 Unsurprisingly, increasing
lactate concentrations in septic shock are also associated
with increasing inhospital mortality, even without signs of
overt shock.69,114 However, despite the emphasis on
specific lactate-level cutoffs found in current definitions
and Centers for Medicare and Medicaid Services
recommendations, mortality and poor prognosis are
associated with even mildly elevated lactate values.115 Thus,
lactate may be best thought of as a continuous rather than
dichotomous variable in regard to prognostication and risk
stratification.

A decrease in lactate concentrations during
resuscitation is associated with improved mortality.116-118
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Although there is no clear target percentage decrease or
time frame to decrease lactate level, achieving a “normal”
lactate level quickly appears to be a reasonable goal; there
is no consensus at this point.117,118 Although earlier
studies evaluated protocoled lactate measurements in the
care of septic patients and showed noninferiority to
targeting central venous oxygen saturation levels, a similar
benefit in mortality was associated with simply measuring
more than one lactate level in the ED.116,119 Some authors
have suggested that measuring lactate itself has mortality
benefits, but it is more likely that early measurement of
lactate is a marker of timely and appropriate care.117 More
recently, a large randomized controlled trial showed that a
resuscitation strategy targeting peripheral perfusion
compared with lactate normalization did not reduce all-
cause 28-day mortality.120
HOW TO USE LACTATE IN THE ED
The diagnostic utility of lactate in the ED is diverse: it

functions as a marker of resuscitation, identifies patients
with occult hypoperfusion, and provides prognostic
information. Figure 2 provides a framework to guide
appropriate interpretation and use of lactate level.
Assuming an appropriately collected and analyzed lactate
Figure 2. Framework to guide appropriate
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sample, the first decision point is to determine whether
there is concern for shock or hypoperfusion. Any patient
with hyperlactatemia and evidence of circulatory shock and
general hypoperfusion clearly benefits from resuscitation to
restore adequate tissue perfusion. Patients with evidence of
regional hypoperfusion (eg, limb or mesenteric ischemia)
require emergency intervention to restore perfusion to the
affected region, and an elevated lactate level may help guide
providers to an accurate and timely diagnosis. In patients
who lack overt shock or hypoperfusion, an elevated lactate
level should be interpreted in the context of the patient’s
medical history, medication list, or any exposures. As we
described earlier, hyperlactatemia can also occur from
overproduction, impaired clearance, or a combination of
both in the absence of tissue malperfusion. Common
medications administered in the ED (eg, albuterol) and
brief episodes of extreme exertion can result in
hyperlactatemia that typically clears quickly without any
intervention. Septic patients may have an elevated lactate
level from accelerated glycolysis caused by adrenergic stress
and may benefit from resuscitation, particularly if there is
legitimate concern for occult shock. Patients with renal
failure and cirrhosis will have higher lactate levels than
counterparts without these conditions. Oncology patients,
particularly those with hematologic malignancy, often have
interpretation and use of lactate level.
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elevated lactate levels from tumor turnover, rather than
infection or hypoperfusion.

Any test showing an elevated lactate level should be
repeated. Lactate clearance is associated with improved
outcomes and successful resuscitation, and risk stratifies
patients with cardiac arrest, shock, or hypoperfusion. A
failure to clear lactate should cause providers to pause and
then reevaluate the elevated lactate level to determine
whether additional resuscitation or therapies are needed. In
certain instances, such as in patients beginning to receive
epinephrine, an increase in lactate level is associated with
increased survival. Patients at risk for thiamine deficiency
may require the administration of thiamine to help clear
lactate. In patients who are anticipated to rapidly clear
lactate without any intervention, a failure to do so should
prompt a reanalysis of the current presentation to ensure no
other processes are present.

Lactate levels may also provide false reassurance because
not all patients with hypoperfusion will generate elevated
lactate levels. For instance, certain patients with superior
mesenteric artery occlusion will have normal lactate
levels.121 Likewise, not all patients with vasopressor-
dependent hypotension will have hyperlactatemia, yet they
have a high mortality rate.59,60
CONCLUSION
Lactate measurement is an important tool for clinicians

in the ED. Significant advances have occurred in our
understanding of the physiology and interpretation of
lactate level, and it is now clear that lactate participates in
many different physiologic processes. An oversimplified
interpretation may mislead providers, but the savvy
provider may recognize that lactate level may be the result
of overproduction, impaired elimination, or both, which
may guide him or her toward appropriate interventions.
With a more nuanced understanding of lactate level
interpretation, this important diagnostic and prognostic
tool becomes even more beneficial.
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