

Impact of Telehealth:

Tele-Emergency and Stroke Care

Presenter

Brian Skow, MD, MBA, CPE, FACEP Avera eCARE Chief Medical Officer

Disclosures

- I have received research funding from HRSA
- Employed by Avera eCARE

Telehealth: Focus on the Team

Extend Specialists to Communities

Recruit and Retain Workforce

Provide Back-up Support

Share Resources and Education

Collaborative Teamwork

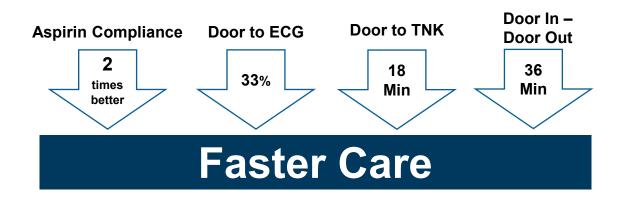
Learning Objectives:

- 1. Describe the benefits of Telehealth for Emergency Departments
- 2. Discuss use cases for a Tele-stroke program

Virtual Emergency Care

Telehealth in the Emergency Department

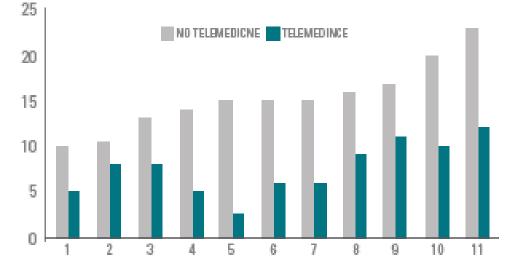
- Instant access to specialty support during difficult or multiple emergency cases
- Assist in intubating patients, managing ventilators and airway protocols



Research: Timeliness of Care

In **28%** of telehealth emergency cases, the hub physician was available prior to the local physician. In these cases, the hub physician was available an average of **21 minutes** sooner than the local physician.

Cardiac Example of Faster Care



Door-to-Door Provider Time by Facility

The dark green bars show the median hospital-specific, door-to-door provider time in cases where telemedicine is consulted. The light gray bars indicate the median hospital-specific, door-to-door provider time in cases where telemedicine was not consulted.

Cardiac Study

- A statistically significant improvement in median time to ECG from 12 minutes to 8 minutes.
- 100% compliance with aspirin administration. Patients were 2.19 times as likely to receive aspirin.
- An 18 minute improvement in door to t-PA for eligible patients
- A 36 minute improvement in mean door-in, door-out time (time to transfer)

Discharge for AMI System • eEmergency 3:18 2:24 1:45 2007 2008 2009 2010 2011 2012

Improvement in Door to

Source: https://smhs.gwu.edu/urgentmatters/sites/ur gentmatters/files/eEmergency.AveraHealth. pdf

Telehealth's impact on patient transfers

1,175 of 9,048 telemedicine cases were identified as avoidable transfers attributed to tele-emergency (over 3.5 year period in 85 rural hospitals across seven states). Analysis was based on examining the rates of avoided transfers in rural emergency departments that adopted tele-emergency applications and by estimating the costs and benefits of using tele-emergency to avoid transfers. Overall, results show that tele-emergency has the potential to result in a **net savings** of \$3,823 per avoided transfer, calculated by figuring in tele-emergency costs, hospital revenues and patient-associated savings.

The 1,175 avoidable transfers equates to an estimated cost savings of \$4.5 million for patients and hospitals.

Reference: Using Tele-Emergency to Avoid Patient Transfers in Rural Emergency Departments: An Assessment of Costs and Benefits

American College of Emergency Physicians*

Using tele-emergency to avoid patient transfers in rural emergency departments: An assessment of costs and benefits

Journal of Telemedicine and Telecare 0(0) 1–9 (C) The Author (s) 2017 Reprints and permissions: sagepub.co.uk/journals/Permissions.nav DOI: 10.1177/13576333X17696585 journals.sagepub.com/home/jtt (S) SAGE

RESULTS:

Physicians indicated 1,175 avoided transfers were attributed to tele-emergency.

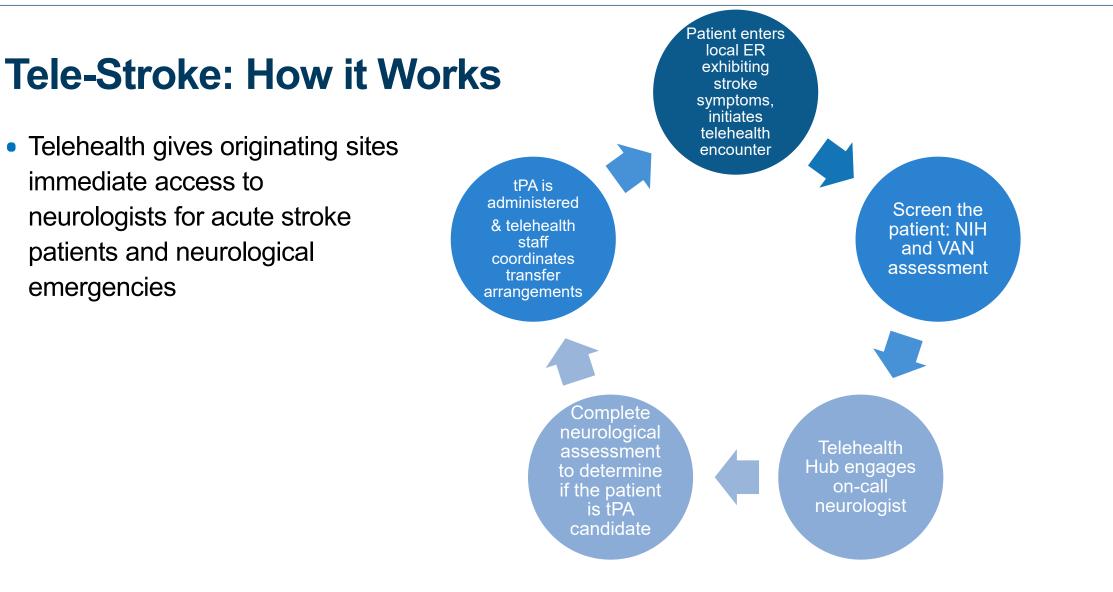
\$5,563 in avoided transportation and indirect patient costs

-\$1,739 in tele-emergency costs per avoided transfer

\$3,824 in net savings

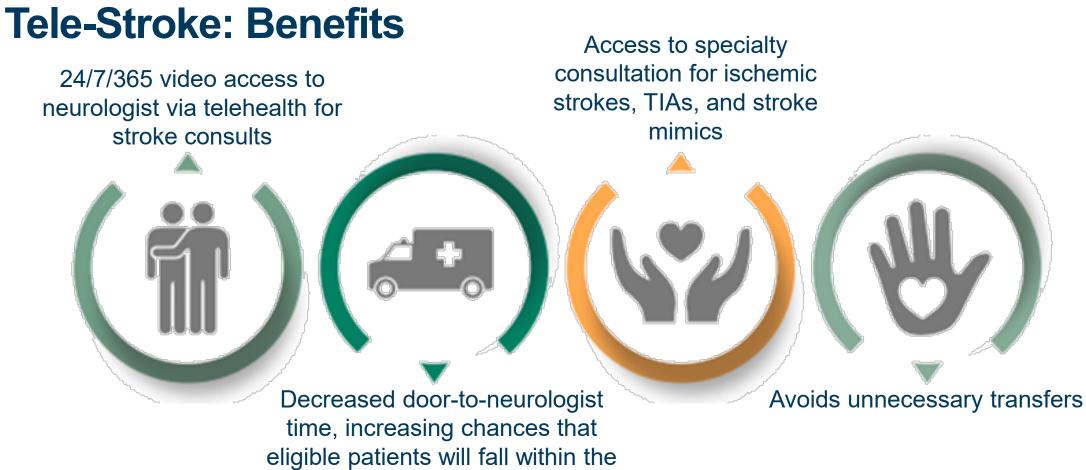
	%	Base-case (1175 avoided transfers)			Worst-case scenario (683 avoided transfers)			Best-case scenario (1667 avoided transfers)			
Transfer method		Transfers	Mileage	Costs (US\$)	Transfers	Mileage	Costs (US\$)	Transfers	Mileage	Costs (US\$)	
Ground ambulance	45%	529	59,585	673,710	307	33,735	381,842	750	85,434	965,577	
Rotary wing	35%	411	32,720	2,696,961	239	19,058	1,567,611	583	46,381	3,826,311	
Fixed wing	15%	176	23,784	1,136,136	102	14,279	675,008	250	33,289	1,597,264	
Private automobile	5%	59	5288	3041	34	3240	1863	83	7337	4219	
Total	100%	1175	121,377	4,509,848	683	70,312	2,626,324	I 667	172,441	6,393,371	

Emergency Department Telemedicine Shortens Rural Time-to-Provider and Emergency Department Transfer Times


Purpose: To measure the impact of ED-based telemedicine on timeliness of care in participating rural hospitals.

Results: Of 127,928 qualifying ED encounters, 2,857 consulted telemedicine and were matched with non-telemedicine controls. Door-to-provider time was shorter in telemedicine patients by 6.0min (95% confidence interval [CI] 4.3–7.8 min). The first provider seeing the patient was a telemedicine provider in 41.7% of telemedicine encounters, and in these cases, telemedicine was 14.7min earlier than local providers. ED LOS was 22.1 min shorter (95% CI 3.1–41.2) among transferred patients, but total ED LOS was longer (40.2min, 95% CI 30.8–49.6 min) for all telemedicine patients.

Conclusion: Telemedicine decreases ED door-to-provider time, most commonly because the telemedicine provider was the first provider seeing a patient. Among transferred patients, ED LOS at the first hospital was shorter in patients who had telemedicine consulted.



window for tPA administration

Telemedicine Is Associated with Faster Diagnostic Imaging in Stroke Patients: A Cohort Study (2019)

	MODEL 1 (LINEAR SCALE)*				MODEL 2 (LOG SCALE)*					
	TELEMEDICINE WAS AVAILABILITY		TELEMEDICINE ACTIVATED		TELEMEDICINE WAS AVAILABILITY		TELEMEDICINE ACTIVATED		MODEL 3 (LOGISTIC SCALE)*	
	MEAN DIFFERENCE	95% Cl	MEAN DIFFERENCE	95% Cl	MEAN DIFFERENCE	95% Cl	MEAN DIFFERENCE	95% Cl	OR	95% Cl
MI										
EKG time ^b	-4.3	-13.6 to 5.0	-3.50	-11.7 to 4.7	-0.04	-0.10 to 0.03	-0.01	-0.07 to 0.04	NA	NA
Fibrinolysis time (STEMI patients only)	-28.2	-82.9 to 26.6	2.5	-44.3 to 49.3	-0.08	-0.39 to 0.22	0.02	-0.24 to 0.28	NA	NA
Fibrinolysis rate (STEMI patients only)										
Telemedicine available	NA	NA	NA	NA	NA	NA	NA	NA	0.80	0.23 to 2.78
Telemedicine activation	NA	NA	NA	NA	NA	NA	NA	NA	6.17	2.34 to 16.3
STROKE			· · · · · · · · · · · · · · · · · · ·							
Head CT interpretation time ^b	20.0	-40.0 to 0.10	-18.50	-35.1 to -1.8	-0.13	-0.27 to 0.01	-0.15	-0.26 to -0.04	NA	NA
tPA time	-12.8	-57.8 to 32.2	1.50	-41.0 to 43.9	-0.12	-0.41 to 0.16	0.04	-0.23 to 0.31	NA	NA
tPA administration										
Telemedicine available	NA	NA	NA	NA	NA	NA	NA	NA	0.14	0.06 to 0.34
Telemedicine activation	NA	NA	NA	NA	NA	NA	NA	NA	3.49	1.50 to 8.15

Table 2. Association of Telemedicine with Time to tPA/CT Interpretation and Those Given tPA (Stroke Within 3 h of Symptom Onset) and Fibrinolysis

^bA constant of 61 was added to times to allow for log transformation of zeros.

Cl, confidence interval; Ml, myocardial infarction; NA, not applicable; OR, odds ratio.

- Telemedicine activation resulted in faster transfer of care to next available provider for MI patients
- Telemedicine use increased the proportion of eligible patients that received fibrinolysis
- Telemedicine activation resulted in faster CT interpretation

Quality Initiatives for Timeliness of Care

- Accurate determination of Last Known Well
- CT order time
- CT interpretation time
- Neuro Consult time
- Accurate Inclusion / Exclusion criteria review
- Improving Door-to-Needle time
- Decision to transfer time to appropriate Stroke Center (LVO to Intervention)

Tele-Stroke Patient Testimonial

Questions?

Thank You

Bibliography

- Weems, J. (2013). "eEmergency Avera Health". Retrieved from
 <u>https://smhs.gwu.edu/urgentmatters/sites/urgentmatters/files/eEmergency.AveraHealth.pdf</u>
- Rural Health Information Hub. (2014). "Avera eCARE". Retrieved from <u>https://www.ruralhealthinfo.org/project-examples/749</u>
- Mohr, N. M., et al. (2018). "Emergency Department Telemedicine Shortens Rural Time-to-Provider and Emergency Department Transfer Times." <u>Telemed J E Health</u>.
- Natafgi, N., et al. (2018). "Using tele-emergency to avoid patient transfers in rural emergency departments: An assessment of costs and benefits." <u>J Telemed Telecare</u> 24(3): 193-201.
- Mohr, N. M., et al. (2019). "Telemedicine Is Associated with Faster Diagnostic Imaging in Stroke Patients: A Cohort Study." <u>Telemed J E Health</u> 25(2): 93-100.